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ZhuSuan-PyTorch is a python probabilistic programming library for Bayesian deep learning, which conjoins the
complimentary advantages of Bayesian methods and deep learning. ZhuSuan is built upon PyTorch. Unlike ex-
isting deep learning libraries, which are mainly designed for deterministic neural networks and supervised tasks,
ZhuSuan-PyTorch provides deep learning style primitives and algorithms for building probabilistic models and apply-
ing Bayesian inference. The supported inference algorithms include:

• Variational inference with programmable variational posteriors, various objectives and advanced gradient esti-
mators (SGVB, etc.).

• MCMC samplers: Stochastic Gradient MCMC (sgmcmc), etc.

CONTENTS 1
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CHAPTER

ONE

INSTALLATION

ZhuSuan-PyTorch is still under development. Before the first stable release (1.0), please clone the GitHub repository
and run

pip install .

in the main directory. This will install ZhuSuan-PyTorch and its dependencies automatically. ZhuSuan-PyTorch is
compatible with the lastest version of PyTorch.

If you are developing ZhuSuan-PyTorch, you may want to install in an “editable” or “develop” mode. Please refer to
the Contributing section.

After installation, open your python console and type:

>>> import zhusuan as zs

If no error occurs, you’ve successfully installed ZhuSuan.

1.1 Basic Concepts in ZhuSuan

1.1.1 Distribution

Distributions are basic functionalities for building probabilistic models. The Distribution class is the base class
for various probabilistic distributions which support batch inputs, generating batches of samples and evaluate proba-
bilities at batches of given values.

We can create a univariate Normal distribution in ZhuSuan by:

>>> import zhusuan as zs
>>> dist_a = zs.distributions.Normal(mean=0., logstd=0.)

The typical input shape for a Distribution is like batch_shape + input_shape, where input_shape
represents the shape of a non-batch input parameter; batch_shape represents how many independent inputs are fed
into the distribution. In general, distributions support broadcasting for inputs.

Samples can be generated by calling sample() method of distribution objects. The shape is ([n_samples] +
)batch_shape + value_shape. The first additional axis is omitted only when passed n_samples is None (by
default), in which case one sample is generated. value_shape is the non-batch value shape of the distribution. For
a univariate distribution, its value_shape is [].

An example of univariate distributions (Normal):

3
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>>> import torch
>>> dist_b = zs.distributions.Normal(mean=[[-1., 1.], [0., -2.]], std=[0., 1.])

>>> dist_b.sample().shape
torch.Size([2, 2])

>>> dist_b.sample(10).shape
torch.Size([10, 2, 2])

There are cases where a batch of random variables are grouped into a single event so that their probabilities can be com-
puted together. This is achieved by setting group_ndims argument, which defaults to 0. The last group_ndims number
of axes in batch_shape are grouped into a single event. For example, Normal(..., group_ndims=1) will
set the last axis of its batch_shape to a single event, i.e., a multivariate Normal with identity covariance matrix.

The log probability density (mass) function can be evaluated by passing given values to log_prob() method of
distribution objects. In that case, the given Tensor should be broadcastable to shape (... + )batch_shape +
value_shape. The returned Tensor has shape (... + )batch_shape[:-group_ndims]. For example:

>>> dist_c = zs.distributions.Normal(mean=[[-1., 1.], [0., -2.]], std=1., group_
→˓ndims=1)

>>> dist_c.log_prob(torch.zeros([1]))
tensor([-2.837877 -3.8378773])

>>> dist_d = zs.distributions.Normal(mean=torch.zeros([2, 1, 3]), std=1.,
... group_ndims=2)

>>> dist_d.log_prob(torch.zeros([5, 1, 1, 3])).shape
torch.Size([5,2,])

1.1.2 BayesianNet

In ZhuSuan we support building probabilistic models as Bayesian networks, i.e., directed graphical models. Below we
use a simple Bayesian linear regression example to illustrate this. The generative process of the model is

𝑤 ∼ 𝑁(0, 𝛼2𝐼)

𝑦 ∼ 𝑁(𝑤⊤𝑥, 𝛽2)

where 𝑥 denotes the input feature in the linear regression. We apply a Bayesian treatment and assume a Normal prior
distribution of the regression weights 𝑤. Suppose the input feature has 5 dimensions. For simplicity we define the
input as a random vector and fix the hyper-parameters:

x = torch.rand([5])
alpha = 1.
beta = 0.1

To define the model, the first step is to define a subclass of BayesianNet:

from zhusuan.framework.bn import BayesianNet
class Net(BayesianNet):

def __init__(self):
# Initialize...

def forward(self, observed):
# Forward propagation...

4 Chapter 1. Installation
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A Bayesian network describes the dependency structure of the joint distribution over a set of random variables as
directed graphs. To support this, a BayesianNet instance can keep two kinds of nodes:

• Stochastic nodes. They are random variables in graphical models. The w node can be constructed as:

w = self.stochastic_node('Normal', name="w", mean=torch.zeros([x.shape[-1]]),
→˓std=alpha)

Alternatively, to prevent passing wrong parameter to distribution classes(mean and std are passed to Normal
class in the above code), stochastic nodes can be also constructed by:

from zhusuan.distributions import Normal

normal = Normal(mean=torch.zeros([x.shape[-1]]), std=alpha)
w = self.stochastic_node(normal, name="w")
# or using alias of stochastic_node method
w = self.sn(normal, name="w")

Here w is a StochasticTensor that follows the Normal distribution, it will be registered to the nodes
property of the class.

>>> print(self.nodes['w'])
<zhusuan.framework.stochastic_tensor.StochasticTensor object at ...

For any distribution available in zhusuan.distributions, we can use the name of the distributions and
the stochastic_node method of BayesianNet to create the corresponding stochastic node. The returned
variables is an sample of stochastic_node, which means that you can mix them with any Torch operations, for
example, the predicted mean of the linear regression is an inner product between w and the input x:

y_mean = torch.sum(w * x, dim=-1)

• Deterministic nodes. As the above code shows, deterministic nodes can be constructed directly with Torch
operations, and in this way BayesianNet does not keep track of them. However, in some cases it’s convenient
to enable the tracking by the cache property:

self.cache['y_mean'] = y_mean

This allows you to fetch the y_mean Var whenever you want it.

The full code of building a Bayesian linear regression model is like:

class bayesian_linear_regression(BayesianNet):
def __init__(self, alpha, beta):

super().__init__()
self.alpha = alpha
self.beta = beta

def forward(self, observed):
self.observe(observed)
x = self.observed['x']
w = self.stochastic_node('Normal', name="w", mean=torch.zeros([x.shape[-1]]),

→˓std=alpha)
y_mean = torch.sum(w * x, dim=-1)
y = self.stochastic_node('Normal', name="y", mean=y_mean, std=beta)
return self

Then we can construct an instance of the model:

1.1. Basic Concepts in ZhuSuan 5
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model = bayesian_linear_regression(alpha, beta)

In ZhuSuan-PyTorch, we use a dictionary variable observed and the method observe() to assign observations to
certain stochastic nodes or pass training data to model, for example:

model({'w': w_obs, 'x': x})

will cause the random variable 𝑤 to be observed as w_obs. The result is that y_mean is computed from the observed
value of w (w_obs) and the training data x passed by the dictionary variable.

For stochastic nodes that are not given observations, their samples will be used when the corresponding
StochasticTensor is involved in computation with Vars or fed into Torch operations. In this example it means
that if we don’t pass any observation of 𝑤 to the model, the samples of w will be used to compute y_mean.

After construction, BayesianNet supports queries about the current state of the network, such as:

# get named node(s)
w = self.nodes['w'].tensor
y = self.nodes['y'].tensor

# get log joint probability given the current values of all stochastic nodes
log_joint_value = self.log_joint()

1.2 Variational Autoencoders

Variational Auto-Encoders (VAE) is one of the most widely used deep generative models. In this tutorial, we show
how to implement VAE in ZhuSuan step by step. The full script is at examples/variational_autoencoders/vae_mnist.py.

The generative process of a VAE for modeling binarized MNIST data is as follows:

𝑧 ∼ N(𝑧|0, 𝐼)

𝑥𝑙𝑜𝑔𝑖𝑡𝑠 = 𝑓𝑁𝑁 (𝑧)

𝑥 ∼ Bernoulli(𝑥|sigmoid(𝑥𝑙𝑜𝑔𝑖𝑡𝑠))

This generative process is a stereotype for deep generative models, which starts with a latent representation (𝑧) sampled
from a simple distribution (such as standard Normal). Then the samples are forwarded through a deep neural network
(𝑓𝑁𝑁 ) to capture the complex generative process of high dimensional observations such as images. Finally, some
noise is added to the output to get a tractable likelihood for the model. For binarized MNIST, the observation noise is
chosen to be Bernoulli, with its parameters output by the neural network.

1.2.1 Build the model

In ZhuSuan, a model is constructed using BayesianNet, which describes a directed graphical model, i.e., Bayesian
networks.

import zhusuan as zs

class Generator(BayesianNet):
def __init__(self, x_dim, z_dim, batch_size):

# Initialize...
def forward(self, observed):

# Forward propagation...

6 Chapter 1. Installation
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Following the generative process, first we need a standard Normal distribution to generate the latent representations
(𝑧). As presented in our graphical model, the data is generated in batches with batch size n, and for each data,
the latent representation is of dimension z_dim. So we add a stochastic node by stochastic_node method to
generate samples of shape [n, z_dim]:

# z ~ N(z|0, I)
mean = torch.zeros([self.batch_size, self.z_dim])
std = torch.ones([self.batch_size, self.z_dim])

z = self.sn('Normal',
name='z',
mean=mean,
std=std,
reparameterize=False,
reduce_mean_dims=[0],
reduce_sum_dims=[1])

The method bn.normal is a helper function that creates a Normal distribution and adds a stochastic node that
follows this distribution to the BayesianNet instance. The returned z is a sample of StochasticTensor,
which can be mixed with Vars and fed into any Torch operations.

Note: To learn more about Distribution and BayesianNet. Please refer to Basic Concepts in ZhuSuan.

The shape of z_mean is [n, z_dim], which means that we have [n, z_dim] independent inputs fed into the
univariate Normal distribution. The shape of samples and probabilities evaluated at this node should be of shape
[n, z_dim]. However, what we want in modeling MNIST data, is a batch of [n] independent events, with each
one producing samples of z that is of shape [z_dim], which is the dimension of latent representations. And the
probabilities in every single event in the batch should be evaluated together, so the shape of local probabilities should
be [n] instead of [n, z_dim]. In ZhuSuan-PyTorch, the way to achieve this is by setting reduce_mean_dims
and reduce_sum_dims.

Then we build a neural network of two fully-connected layers with 𝑧 as the input, which is supposed to learn the
complex transformation that generates images from their latent representations:

# x_logits = f_NN(z)
# In __init__
self.fc1 = nn.Linear(z_dim, 500)
self.act1 = nn.Relu()
self.fc2 = nn.Linear(500, 500)
self.act2 = nn.Relu()
self.fc2_ = nn.Linear(500, x_dim)

# In forward
x_logits = self.fc2_(self.act2(self.fc2(self.act1(self.fc1(z)))))

Next, we add an observation distribution (noise) that follows the Bernoulli distribution to get a tractable likelihood
when evaluating the probability of an image:

# x ~ Bernoulli(x|sigmoid(x_logits))
x_probs = nn.Sigmoid()(x_logits)
self.sn('Bernoulli',

name='x',
probs=x_probs,
reduce_mean_dims=[0],
reduce_sum_dims=[1])

1.2. Variational Autoencoders 7



ZhuSuan Documentation, Release 0.0.1

Note: The Bernoulli distribution accepts log-odds of probabilities instead of probabilities. This is designed for
numeric stability reasons.

Putting together, the code for constructing a VAE is:

class Generator(BayesianNet):
def __init__(self, x_dim, z_dim, batch_size):

super().__init__()
self.x_dim = x_dim
self.z_dim = z_dim
self.batch_size = batch_size

self.fc1 = nn.Linear(z_dim, 500)
self.act1 = nn.ReLU()
self.fc2 = nn.Linear(500, 500)
self.act2 = nn.ReLU()

self.fc2_ = nn.Linear(500, x_dim)
self.act2_ = nn.Sigmoid()

def forward(self, observed):
self.observe(observed)
mean = torch.zeros([self.batch_size, self.z_dim])
std = torch.ones([self.batch_size, self.z_dim])

z = self.sn('Normal',
name='z',
mean=mean,
std=std,
reparameterize=False,
reduce_mean_dims=[0],
reduce_sum_dims=[1])

x_probs = self.act2_(self.fc2_(self.act2(self.fc2(self.act1(self.fc1(z))))))
self.cache['x_mean'] = x_probs
sample_x = self.sn('Bernoulli',

name='x',
probs=x_probs,
reduce_mean_dims=[0],
reduce_sum_dims=[1])

return self

generator = Generator(x_dim, z_dim, batch_size)

1.2.2 Inference and learning

Having built the model, the next step is to learn it from binarized MNIST images. We conduct Maximum Likelihood
learning, that is, we are going to maximize the log likelihood of data in our model:

max
𝜃

log 𝑝𝜃(𝑥)

where 𝜃 is the model parameter.

Note: In this variational autoencoder, the model parameter is the network weights, in other words, it’s the Torch
tensor created in the fully_connected layers.

8 Chapter 1. Installation
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However, the model we defined has not only the observation (𝑥) but also latent representation (𝑧). This makes it hard
for us to compute 𝑝𝜃(𝑥), which we call the marginal likelihood of 𝑥, because we only know the joint likelihood of the
model:

𝑝𝜃(𝑥, 𝑧) = 𝑝𝜃(𝑥|𝑧)𝑝(𝑧)

while computing the marginal likelihood requires an integral over latent representation, which is generally intractable:

𝑝𝜃(𝑥) =

∫︁
𝑝𝜃(𝑥, 𝑧) 𝑑𝑧

The intractable integral problem is a fundamental challenge in learning latent variable models like VAEs. Fortunately,
the machine learning society has developed many approximate methods to address it. One of them is Variational
Inference. As the intuition is very simple, we briefly introduce it below.

Because directly optimizing log 𝑝𝜃(𝑥) is infeasible, we choose to optimize a lower bound of it. The lower bound is
constructed as

log 𝑝𝜃(𝑥) ≥ log 𝑝𝜃(𝑥)−KL(𝑞𝜑(𝑧|𝑥)‖𝑝𝜃(𝑧|𝑥))

= E𝑞𝜑(𝑧|𝑥) [log 𝑝𝜃(𝑥, 𝑧)− log 𝑞𝜑(𝑧|𝑥)]

= ℒ(𝜃, 𝜑)

where 𝑞𝜑(𝑧|𝑥) is a user-specified distribution of 𝑧 (called variational posterior) that is chosen to match the true
posterior 𝑝𝜃(𝑧|𝑥). The lower bound is equal to the marginal log likelihood if and only if 𝑞𝜑(𝑧|𝑥) = 𝑝𝜃(𝑧|𝑥), when the
Kullback–Leibler divergence between them (KL(𝑞𝜑(𝑧|𝑥)‖𝑝𝜃(𝑧|𝑥))) is zero.

Note: In Bayesian Statistics, the process represented by the Bayes’ rule

𝑝(𝑧|𝑥) =
𝑝(𝑧)(𝑥|𝑧)

𝑝(𝑥)

is called Bayesian Inference, where 𝑝(𝑧) is called the prior, 𝑝(𝑥|𝑧) is the conditional likelihood, 𝑝(𝑥) is the marginal
likelihood or evidence, and 𝑝(𝑧|𝑥) is known as the posterior.

This lower bound is usually called Evidence Lower Bound (ELBO). Note that the only probabilities we need to
evaluate in it is the joint likelihood and the probability of the variational posterior.

In variational autoencoder, the variational posterior (𝑞𝜑(𝑧|𝑥)) is also parameterized by a neural network (𝑔), which
accepts input 𝑥, and outputs the mean and variance of a Normal distribution:

𝜇𝑧(𝑥;𝜑), log 𝜎𝑧(𝑥;𝜑) = 𝑔𝑁𝑁 (𝑥)

𝑞𝜑(𝑧|𝑥) = N(𝑧|𝜇𝑧(𝑥;𝜑), 𝜎2
𝑧(𝑥;𝜑))

In ZhuSuan, the variational posterior can also be defined as a BayesianNet . The code for above definition is:

class Variational(BayesianNet):
def __init__(self, x_dim, z_dim, batch_size):

super().__init__()
self.x_dim = x_dim
self.z_dim = z_dim
self.batch_size = batch_size

self.fc1 = nn.Linear(x_dim, 500)
self.act1 = nn.ReLU()
self.fc2 = nn.Linear(500, 500)
self.act2 = nn.ReLU()

(continues on next page)
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https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Bayesian_inference


ZhuSuan Documentation, Release 0.0.1

(continued from previous page)

self.fc3 = nn.Linear(500, z_dim)
self.fc4 = nn.Linear(500, z_dim)

self.dist = None

def forward(self, observed):
self.observe(observed)
x = self.observed['x']
z_logits = self.act2(self.fc2(self.act1(self.fc1(x))))

z_mean = self.fc3(z_logits)
z_std = torch.exp(self.fc4(z_logits))

z = self.sn('Normal',
name='z',
mean=z_mean,
std=z_std,
reparameterize=True,
reduce_mean_dims=[0],
reduce_sum_dims=[1])

return self

variational = Variational(x_dim, z_dim, batch_size)

Having both model and variational, we can build a model which calculate the lower bound as:

model = zs.variational.ELBO(generator, variational)

The returned lower_bound is an EvidenceLowerBoundObjective instance, which is a derivativation of
Torch’s Module. However, optimizing the lower bound objective needs special care. The easiest way is to do stochastic
gradient descent (SGD), which is very common in deep learning literature. However, the gradient computation here
involves taking derivatives of an expectation, which needs Monte Carlo estimation. This often induces large variance
if not properly handled.

Note: Directly using auto-differentiation to compute the gradients of EvidenceLowerBoundObjective often
gives you the wrong results. This is because auto-differentiation is not designed to handle expectations.

Many solutions have been proposed to estimate the gradient of some type of variational lower bound (ELBO
or others) with relatively low variance. To make this more automatic and easier to handle, ZhuSuan
has wrapped these gradient estimators all into methods of the corresponding variational objective (e.g., the
EvidenceLowerBoundObjective). These functions don’t return gradient estimates but a more convenient sur-
rogate cost. Applying SGD on this surrogate cost with respect to parameters is equivalent to optimizing the corre-
sponding variational lower bounds using the well-developed low-variance estimator.

Here we are using the Stochastic Gradient Variational Bayes (SGVB) estimator from the original paper of variational
autoencoders [VAEKW13]. This estimator takes benefits of a clever reparameterization trick to greatly reduce the
variance when estimating the gradients of ELBO. In ZhuSuan, one can use this estimator by calling the method
sgvb() of the class:~zhusuan.variational.exclusive_kl.EvidenceLowerBoundObjective instance. The code for this
part is:

# the surrogate cost for optimization
lower_bound = model({'x': batch_x})

10 Chapter 1. Installation
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Note: For readers who are interested, we provide a detailed explanation of the sgvb() estimator used here, though
this is not required for you to use ZhuSuan’s variational functionality.

The key of SGVB estimator is a reparameterization trick, i.e., they reparameterize the random variable 𝑧 ∼ 𝑞𝜑(𝑧|𝑥) =
N(𝑧|𝜇𝑧(𝑥;𝜑), 𝜎2

𝑧(𝑥;𝜑)), as

𝑧 = 𝑧(𝜖;𝑥, 𝜑) = 𝜖𝜎𝑧(𝑥;𝜑) + 𝜇𝑧(𝑥;𝜑), 𝜖 ∼ N(0, 𝐼)

In this way, the expectation can be rewritten with respect to 𝜖:

ℒ(𝜑, 𝜃) = E𝑧∼𝑞𝜑(𝑧|𝑥) [log 𝑝𝜃(𝑥, 𝑧)− log 𝑞𝜑(𝑧|𝑥)]

= E𝜖∼N(0,𝐼) [log 𝑝𝜃(𝑥, 𝑧(𝜖;𝑥, 𝜑))− log 𝑞𝜑(𝑧(𝜖;𝑥, 𝜑)|𝑥)]

Thus the gradients with variational parameters 𝜑 can be directly moved into the expectation, enabling an unbiased
low-variance Monte Carlo estimator:

∇𝜑𝐿(𝜑, 𝜃) = E𝜖∼N(0,𝐼)∇𝜑 [log 𝑝𝜃(𝑥, 𝑧(𝜖;𝑥, 𝜑))− log 𝑞𝜑(𝑧(𝜖;𝑥, 𝜑)|𝑥)]

≈ 1

𝑘

𝑘∑︁
𝑖=1

∇𝜑 [log 𝑝𝜃(𝑥, 𝑧(𝜖𝑖;𝑥, 𝜑))− log 𝑞𝜑(𝑧(𝜖𝑖;𝑥, 𝜑)|𝑥)]

where 𝜖𝑖 ∼ N(0, 𝐼)

Now that we have had the cost, the next step is to do the stochastic gradient descent. Torch provides many advanced
optimizers that improves the plain SGD, among which Adam [VAEKB14] is probably the most popular one in deep
learning society. Here we are going to use Torch’s Adam optimizer to do the learning:

optimizer = torch.optim.Adam(model.parameters(), lr)

# During each iter
optimizer.zero_grad()
loss.backward()
optimizer.step()

1.2.3 Generate images

What we’ve done above is to define and learn the model. To see how it performs, we would like to let it generate some
images in the learning process. We put the Var x_mean in the cache of Generator to keep track of it.

class Generator(BayesianNet):
def __init__(self, x_dim, z_dim, batch_size):

...

def forward(self, observed):
...
x_probs = self.act2_(self.fc2_(self.act2(self.fc2(self.act1(self.fc1(z))))))
self.cache['x_mean'] = x_probs
self.sn('Bernoulli',

name='x',
probs=x_probs,
reduce_mean_dims=[0],
reduce_sum_dims=[1])

...

1.2. Variational Autoencoders 11
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so that we can easily access it from a BayesianNet instance. For random generations, no observation
about the model is made, so we pass an empty observation to the model and get the generated sample by the
cache['x_mean'] of Generator:

cache = generator({}).cache
sample_gen = cache['x_mean']

1.2.4 Run gradient descent

Now, everything is good before a run. So we could just run the training loop, print statistics, and write generated
images to disk using Torch:

for epoch in range(epoch_size):
for step in range(num_batches):

x = torch.as_tensor(x_train[step * batch_size:min((step + 1) * batch_size,
→˓len_)])

x = torch.reshape(x, [-1, x_dim])
if x.shape[0] != batch_size:

break
loss = model({'x': x})
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (step + 1) % 100 == 0:

print("Epoch[{}/{}], Step [{}/{}], Loss: {:.4f}".format(epoch + 1, epoch_
→˓size, step + 1, num_batches,loss))

batch_x = x_test[0:64]

cache = generator({}).cache
sample_gen = cache['x_mean'].numpy()

Below is a sample image of random generations from the model. Keep watching them and have fun :)

12 Chapter 1. Installation
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References

1.3 Bayesian Neural Networks

Note: This tutorial assumes that readers have been familiar with ZhuSuan’s basic concepts.

Recent years have seen neural networks’ powerful abilities in fitting complex transformations, with successful appli-
cations on speech recognition, image classification, and machine translation, etc. However, typical training of neural
networks requires lots of labeled data to control the risk of overfitting. And the problem becomes harder when it comes
to real world regression tasks. These tasks often have smaller amount of training data to use, and the high-frequency
characteristics of these data often makes neural networks easier to get trapped in overfitting.

A principled approach for solving this problem is Bayesian Neural Networks (BNN). In BNN, prior distributions
are put upon the neural network’s weights to consider the modeling uncertainty. By doing Bayesian inference on the
weights, one can learn a predictor which both fits to the training data and reasons about the uncertainty of its own
prediction on test data. In this tutorial, we show how to implement BNNs in ZhuSuan. The full script for this tutorial
is at examples/bayesian_neural_nets/bnn_vi.py.

We use a regression dataset called Boston housing. This has 𝑁 = 506 data points, with 𝐷 = 13 dimensions. The
generative process of a BNN for modeling multivariate regression is as follows:

𝑊𝑖 ∼ N(𝑊𝑖|0, 𝐼), 𝑖 = 1 · · ·𝐿.
𝑦𝑚𝑒𝑎𝑛 = 𝑓𝑁𝑁 (𝑥, {𝑊𝑖}𝐿𝑖=1)

𝑦 ∼ N(𝑦|𝑦𝑚𝑒𝑎𝑛, 𝜎
2)

This generative process starts with an input feature (𝑥), which is forwarded through a deep neural network (𝑓𝑁𝑁 ) with
𝐿 layers, whose parameters in each layer (𝑊𝑖) satisfy a factorized multivariate standard Normal distribution. With
this forward transformation, the model is able to learn complex relationships between the input (𝑥) and the output (𝑦).
Finally, some noise is added to the output to get a tractable likelihood for the model, which is typically a Gaussian
noise in regression problems. A graphical model representation for bayesian neural network is as follows.
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1.3.1 Build the model

We start by the model building function (we shall see the meanings of these arguments later):

class Net(BayesianNet):
def __init__(self, layer_sizes, n_particles):

super().__init__()

Following the generative process, we need standard Normal distributions to generate the weights ({𝑊𝑖}𝐿𝑖=1) in each
layer. For a layer with n_in input units and n_out output units, the weights are of shape [n_out, n_in + 1]
(one additional column for bias). To support multiple samples (useful in inference and prediction), a common practice
is to set the n_samples argument to a placeholder, which we choose to be n_particles here:

h = x.repeat([self.n_particles, *len(x.shape) * [1]])
for i, (n_in, n_out) in enumerate(zip(self.layer_sizes[:-1], self.layer_sizes[1:])):

w = self.sn('Normal',
name='w' + str(i),
mean=torch.zeros([n_out, n_in + 1]),
std=torch.ones([n_out, n_in + 1]),
group_ndims=2,
n_samples=self.n_particles,
reduce_mean_dims=[0])

Note that we expand x with a new dimension and tile it to enable computation with multiple particles of weight
samples. To treat the weights in each layer as a whole and evaluate the probability of them together, group_ndims
is set to 2. If you are unfamiliar with this property, see Distribution for details.

Then we write the feed-forward process of neural networks, through which the connection between output y and input
x is established:

for i, (n_in, n_out) in enumerate(zip(self.layer_sizes[:-1], self.layer_sizes[1:])):
w = self.sn('Normal',

name='w' + str(i),
mean=torch.zeros([n_out, n_in + 1]),
std=torch.ones([n_out, n_in + 1]),
group_ndims=2,
n_samples=self.n_particles,
reduce_mean_dims=[0])

w = torch.unsqueeze(w, 1)
w = w.repeat([1, batch_size, 1, 1])
h = torch.cat((h, torch.ones([*h.shape[:-1], 1])), -1)
h = torch.unsqueeze(h, -1)
p = torch.sqrt(torch.as_tensor(h.shape[2], dtype=torch.float32))
h = torch.matmul(w, h) / p
h = torch.squeeze(h, -1)
if i < len(self.layer_sizes) - 2:

h = torch.nn.ReLU()(h)

Next, we add an observation distribution (noise) to get a tractable likelihood when evaluating the probability:

y = self.observed['y']
y_pred = torch.mean(y_mean, 0)
self.cache['rmse'] = torch.sqrt(torch.mean((y - y_pred) ** 2))

self.sn('Normal',
name='y',
mean=y_mean,

(continues on next page)

14 Chapter 1. Installation



ZhuSuan Documentation, Release 0.0.1

(continued from previous page)

logstd=self.y_logstd,
reparameterize=True,
reduce_mean_dims=[0, 1],
multiplier=456) # training data size

Putting together and adding model reuse, the code for constructing a BNN is:

class Net(BayesianNet):
def __init__(self, layer_sizes, n_particles):

super().__init__()
self.layer_sizes = layer_sizes
self.n_particles = n_particles
self.y_logstd = torch.nn.parameter.Parameter(torch.nn.init.constant_(torch.

→˓empty([1], dtype = torch.float32), 0.0), requires_grad=True)

def forward(self, observed):
self.observe(observed)
x = self.observed['x']
h = x.repeat([self.n_particles, *len(x.shape) * [1]])

batch_size = x.shape[0]

for i, (n_in, n_out) in enumerate(zip(self.layer_sizes[:-1], self.layer_
→˓sizes[1:])):

w = self.sn('Normal',
name='w' + str(i),
mean=torch.zeros([n_out, n_in + 1]),
std=torch.ones([n_out, n_in + 1]),
group_ndims=2,
n_samples=self.n_particles,
reduce_mean_dims=[0])

w = torch.unsqueeze(w, 1)
w = w.repeat([1, batch_size, 1, 1])
h = torch.cat((h, torch.ones([*h.shape[:-1], 1])), -1)
h = torch.unsqueeze(h, -1)
p = torch.sqrt(torch.as_tensor(h.shape[2], dtype=torch.float32))
h = torch.matmul(w, h) / p
h = torch.squeeze(h, -1)
if i < len(self.layer_sizes) - 2:

h = torch.nn.ReLU()(h)

y_mean = torch.squeeze(h, 2)

y = self.observed['y']
y_pred = torch.mean(y_mean, 0)
self.cache['rmse'] = torch.sqrt(torch.mean((y - y_pred) ** 2))

self.sn('Normal',
name='y',
mean=y_mean,
logstd=self.y_logstd,
reparameterize=True,
reduce_mean_dims=[0, 1],
multiplier=456) # training data size

return self

1.3. Bayesian Neural Networks 15



ZhuSuan Documentation, Release 0.0.1

1.3.2 Inference

Having built the model, the next step is to infer the posterior distribution, or uncertainty of weights given the training
data.

𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁 ) ∝ 𝑝(𝑊 )

𝑁∏︁
𝑛=1

𝑝(𝑦𝑛|𝑥𝑛,𝑊 )

Because the normalizing constant is intractable, we cannot directly compute the posterior distribution of network
parameters ({𝑊𝑖}𝐿𝑖=1). In order to solve this problem, we use Variational Inference, i.e., using a variational distribution
𝑞𝜑({𝑊𝑖}𝐿𝑖=1) =

∏︀𝐿
𝑖=1 𝑞𝜑𝑖

(𝑊𝑖) to approximate the true posterior. The simplest variational posterior (𝑞𝜑𝑖
(𝑊𝑖)) we can

specify is factorized (also called mean-field) Normal distribution parameterized by its mean and log standard deviation.

𝑞𝜑𝑖
(𝑊𝑖) = N(𝑊𝑖|𝜇𝑖, 𝜎𝑖

2)

The code for above definition is:

class Variational(BayesianNet):
def __init__(self, layer_sizes, n_particles):

super().__init__()
self.layer_sizes = layer_sizes
self.n_particles = n_particles

self.w_means = []
self.w_logstds = []

for i, (n_in, n_out) in enumerate(zip(self.layer_sizes[:-1], self.layer_
→˓sizes[1:])):

w_mean = torch.nn.init.constant_(torch.empty([n_out, n_in + 1], dtype =
→˓torch.float32), 0)

_name = 'w_mean_' + str(i)
self.__dict__[_name] = w_mean
w_logstd = torch.nn.init.constant_(torch.empty([n_out, n_in + 1], dtype =

→˓torch.float32), 0)
_name = 'w_logstd_' + str(i)
self.__dict__[_name] = w_logstd
w_mean = torch.nn.parameter.Parameter(w_mean, requires_grad=True)
w_logstd = torch.nn.parameter.Parameter(w_logstd, requires_grad=True)
self.w_means.append(w_mean)
self.w_logstds.append(w_logstd)

self.w_means = torch.nn.ParameterList(self.w_means)
self.w_logstds = torch.nn.ParameterList(self.w_logstds)

def forward(self, observed):
self.observe(observed)
for i, (n_in, n_out) in enumerate(zip(self.layer_sizes[:-1], self.layer_

→˓sizes[1:])):
self.sn('Normal',

name='w' + str(i),
mean=self.w_means[i],
logstd=self.w_logstds[i],
group_ndims=2,
n_samples=self.n_particles,
reparameterize=True,
reduce_mean_dims=[0])

return self
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In Variational Inference, to make 𝑞𝜑(𝑊 ) approximate 𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁 ) well. We need to maximize a lower bound of
the marginal log probability (log 𝑝(𝑦|𝑥)):

log 𝑝(𝑦1:𝑁 |𝑥1:𝑁 ) ≥ log 𝑝(𝑦1:𝑁 |𝑥1:𝑁 )−KL(𝑞𝜑(𝑊 )‖𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁 ))

= E𝑞𝜑(𝑊 ) [log(𝑝(𝑦1:𝑁 |𝑥1:𝑁 ,𝑊 )𝑝(𝑊 ))− log 𝑞𝜑(𝑊 )]

, ℒ(𝜑)

The lower bound is equal to the marginal log likelihood if and only if 𝑞𝜑(𝑊 ) = 𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁 ), for 𝑖 in 1 · · ·𝐿,
when the Kullback–Leibler divergence between them (KL(𝑞𝜑(𝑊 )‖𝑝(𝑊 |𝑥1:𝑁 , 𝑦1:𝑁 )) is zero.

This lower bound is usually called Evidence Lower Bound (ELBO). Note that the only probabilities we need to
evaluate in it is the joint likelihood and the probability of the variational posterior. The log conditional likelihood is

log 𝑝(𝑦1:𝑁 |𝑥1:𝑁 ,𝑊 ) =

𝑁∑︁
𝑛=1

log 𝑝(𝑦𝑛|𝑥𝑛,𝑊 )

Computing log conditional likelihood for the whole dataset is very time-consuming. In practice, we sub-sample a
minibatch of data to approximate the conditional likelihood

log 𝑝(𝑦1:𝑁 |𝑥1:𝑁 ,𝑊 ) ≈ 𝑁

𝑀

𝑀∑︁
𝑚=1

log 𝑝(𝑦𝑚|𝑥𝑚,𝑊 )

Here {(𝑥𝑚, 𝑦𝑚)}𝑚=1:𝑀 is a subset including 𝑀 random samples from the training set {(𝑥𝑛, 𝑦𝑛)}𝑛=1:𝑁 . 𝑀 is called
the batch size. By setting the batch size relatively small, we can compute the lower bound above efficiently.

Note: Different from models like VAEs, BNN’s latent variables {𝑊𝑖}𝐿𝑖=1 are global for all the data, therefore we
don’t explicitly condition 𝑊 on each data in the variational posterior.

We optimize this lower bound by stochastic gradient descent. As we have done in the VAE tutorial, the Stochastic
Gradient Variational Bayes (SGVB) estimator is used. The code for this part is:

net = Net(layer_sizes, n_particles)
variational = Variational(layer_sizes, n_particles)

model = zs.variational.ELBO(net, variational)

1.3.3 Evaluation

What we’ve done above is to define the model and infer the parameters. The main purpose of doing this is to predict
about new data. The probability distribution of new data (𝑦) given its input feature (𝑥) and our training data (𝐷) is

𝑝(𝑦|𝑥,𝐷) =

∫︁
𝑊

𝑝(𝑦|𝑥,𝑊 )𝑝(𝑊 |𝐷)

Because we have learned the approximation of 𝑝(𝑊 |𝐷) by the variational posterior 𝑞(𝑊 ), we can substitute it into
the equation

𝑝(𝑦|𝑥,𝐷) ≃
∫︁
𝑊

𝑝(𝑦|𝑥,𝑊 )𝑞(𝑊 )

Although the above integral is still intractable, Monte Carlo estimation can be used to get an unbiased estimate of it
by sampling from the variational posterior

𝑝(𝑦|𝑥,𝐷) ≃ 1

𝑀

𝑀∑︁
𝑖=1

𝑝(𝑦|𝑥,𝑊 𝑖) 𝑊 𝑖 ∼ 𝑞(𝑊 )
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We can choose the mean of this predictive distribution to be our prediction on new data

𝑦𝑝𝑟𝑒𝑑 = E𝑝(𝑦|𝑥,𝐷) 𝑦 ≃
1

𝑀

𝑀∑︁
𝑖=1

E𝑝(𝑦|𝑥,𝑊 𝑖) 𝑦 𝑊 𝑖 ∼ 𝑞(𝑊 )

The above equation can be implemented by passing the samples from the variational posterior as observations into
the model, and averaging over the samples of y_mean from the resulting BayesianNet. The trick here is that the
procedure of observing 𝑊 as samples from 𝑞(𝑊 ) has been implemented when constructing the evidence lower bound.

# prediction: rmse & log likelihood
# In Net
y_mean = torch.squeeze(h, 2)

y = self.observed['y']
y_pred = torch.mean(y_mean, 0)
self.cache['rmse'] = torch.sqrt(torch.mean((y - y_pred) ** 2))
# During training
lower_bound = model({'x': x, 'y': y})

The predictive mean is given by y_mean. To see how this performs, we would like to compute some quantitative
measurements including Root Mean Squared Error (RMSE) and log likelihood.

RMSE is defined as the square root of the predictive mean square error, smaller RMSE means better predictive accu-
racy:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

(𝑦𝑝𝑟𝑒𝑑𝑛 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡𝑛 )2

Log likelihood (LL) is defined as the natural logarithm of the likelihood function, larger LL means that the learned
model fits the test data better:

𝐿𝐿 = log 𝑝(𝑦|𝑥,𝐷)

≃ log

∫︁
𝑊

𝑝(𝑦|𝑥,𝑊 )𝑞(𝑊 )

This can also be computed by Monte Carlo estimation

𝐿𝐿 ≃ log
1

𝑀

𝑀∑︁
𝑖=1

𝑝(𝑦|𝑥,𝑊 𝑖) 𝑊 𝑖 ∼ 𝑞(𝑊 )

To be noted, as we usually standardized the data to make them have unit variance at beginning (check the full script
examples/bayesian_neural_nets/bnn_vi.py), we need to count its effect in our evaluation formulas. RMSE is propor-
tional to the amplitude, therefore the final RMSE should be multiplied with the standard deviation. For log likelihood,
it needs to be subtracted by a log term. All together, the code for evaluation is:

# prediction: rmse & log likelihood
rese = net.cache['rmse']
log_ll = model({'x': x, 'y': y})
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1.3.4 Run gradient descent

Again, everything is good before a run. Now add the following codes to run the training loop and see how your BNN
performs:

for epoch in range(epoch_size):
perm = np.random.permutation(x_train.shape[0])
x_train = x_train[perm, :]
y_train = y_train[perm]

for step in range(num_batches):
x = torch.as_tensor(x_train[step * batch_size:(step + 1) * batch_size])
y = torch.as_tensor(y_train[step * batch_size:(step + 1) * batch_size])
lbs = model({'x': x, 'y': y})
optimizer.zero_grad()
lbs.backward()
optimizer.step()

if (step + 1) % num_batches == 0:
rmse = net.cache['rmse'].clone().detach().numpy()
print("Epoch[{}/{}], Step [{}/{}], Lower bound: {:.4f}, RMSE: {:.4f}".

→˓format(epoch + 1, epoch_size,

→˓ step + 1,

→˓ num_batches,

→˓ float(lbs.clone().detach().numpy()),

→˓ float(rmse) * std_y_train))

# eval
if epoch % test_freq == 0:

x_t = torch.as_tensor(x_test)
y_t = torch.as_tensor(y_test)
lbs = model({'x': x_t, 'y': y_t})
rmse = net.cache['rmse'].clone().detach().numpy()
print('>> TEST')
print('>> Test Lower bound: {:.4f}, RMSE: {:.4f}'.format(float(lbs.clone().

→˓detach().numpy()), float(rmse) * std_y_train))

1.4 Logistic Normal Topic Models

The full script for this tutorial is at examples/topic_models/lntm_mcem.py.
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1.4.1 An introduction to topic models and Latent Dirichlet Allocation

Nowadays it is much easier to get large corpus of documents. Even if there are no suitable labels with these docu-
ments, much information can be extracted. We consider designing a probabilistic model to generate the documents.
Generative models can bring more benefits than generating more data. One can also fit the data under some specific
structure through generative models. By inferring the parameters in the model (either return a most probable value or
figure out its distribution), some valuable information may be discovered.

For example, we can model documents as arising from multiple topics, where a topic is defined to be a distribution
over a fixed vocabulary of terms. The most famous model is Latent Dirichlet Allocation (LDA) [LNTMBNJ03].
First we describe the notations. Following notations differ from the standard notations in two places for consistence
with our notations of LNTM: The topics is denoted �⃗� instead of 𝛽, and the scalar Dirichlet prior of topics is 𝛿 instead
of 𝜂. Suppose there are 𝐷 documents in the corpus, and the 𝑑th document has 𝑁𝑑 words. Let 𝐾 be a specified number
of topics, 𝑉 the size of vocabulary, �⃗� a positive 𝐾 dimension-vector, and 𝛿 a positive scalar. Let Dir𝐾(�⃗�) denote a 𝐾-
dimensional Dirichlet with vector parameter �⃗� and Dir𝑉 (𝛿) denote a 𝑉 -dimensional Dirichlet with scalar parameter
𝛿. Let Catg(𝑝) be a categorical distribution with vector parameter 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑛)𝑇 (

∑︀𝑛
𝑖=1 𝑝𝑖 = 1) and support

{1, 2, ..., 𝑛}.

Note: Sometimes, the categorical and multinomial distributions are conflated, and it is common to speak of a “multi-
nomial distribution” when a “categorical distribution” would be more precise. These two distributions are distin-
guished in ZhuSuan.

The generative process is:

�⃗�𝑘 ∼ Dir𝑉 (𝛿), 𝑘 = 1, 2, ...,𝐾

𝜃𝑑 ∼ Dir𝐾(�⃗�), 𝑑 = 1, 2, ..., 𝐷

𝑧𝑑𝑛 ∼ Catg(𝜃𝑑), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

𝑤𝑑𝑛 ∼ Catg(�⃗�𝑧𝑑𝑛), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

In more detail, we first sample 𝐾 topics {�⃗�𝑘}𝐾𝑘=1 from the symmetric Dirichlet prior with parameter 𝛿, so each topic
is a 𝐾-dimensional vector, whose components sum up to 1. These topics are shared among different documents.
Then for each document, suppose it is the 𝑑th document, we sample a topic proportion vector 𝜃𝑑 from the Dirichlet
prior with parameter �⃗�, indicating the topic proportion of this document, such as 70% topic 1 and 30% topic 2. Next
we start to sample the words in the document. Sampling each word 𝑤𝑑𝑛 is a two-step process: first, sample the
topic assignment 𝑧𝑑𝑛 from the categorical distribution with parameter 𝜃𝑑; secondly, sample the word 𝑤𝑑𝑛 from the
categorical distribution with parameter �⃗�𝑧𝑑𝑛 . The range of 𝑑 is 1 to 𝐷, and the range of 𝑛 is 1 to 𝑁𝑑 in the 𝑑th
document. The model is shown as a directed graphical model in the following figure.

Note: Topic {𝜑𝑘}, topic proportion {𝜃𝑑}, and topic assignment {𝑧𝑑𝑛} have very different meaning. Topic means
some distribution over the words in vocabulary. For example,a topic consisting of 10% “game”, 5% “hockey”, 3%
“team”, . . . , possibly means a topic about sports. They are shared among different documents. A topic proportion
belongs to a document, roughly indicating the probability distribution of topics in the document. A topic assignment
belongs to a word in a document, indicating when sampling the word, which topic is sampled first, so the word
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is sampled from this assigned topic. Both topic, topic proportion, and topic assignment are latent variables which
we have not observed. The only observed variable in the generative model is the words {𝑤𝑑𝑛}, and what Bayesian
inference needs to do is to infer the posterior distribution of topic {𝜑𝑘}, topic proportion {𝜃𝑑}, and topic assignment
{𝑧𝑑𝑛}.

The key property of LDA is conjugacy between the Dirichlet prior and likelihood. We can write the joint probability
distribution as follows:

𝑝(𝑤1:𝐷,1:𝑁 , 𝑧1:𝐷,1:𝑁 , 𝜃1:𝐷, �⃗�1:𝐾 ; �⃗�, 𝛿) =

𝐾∏︁
𝑘=1

𝑝(�⃗�𝑘; 𝛿)

𝐷∏︁
𝑑=1

{𝑝(𝜃𝑑; �⃗�)

𝑁𝑑∏︁
𝑛=1

[𝑝(𝑧𝑑𝑛|𝜃𝑑)𝑝(𝑤𝑑𝑛|𝑧𝑑𝑛, �⃗�1:𝐾)]}

Here 𝑝(𝑦|𝑥) means conditional distribution in which 𝑥 is a random variable, but 𝑝(𝑦;𝑥) means distribution parameter-
ized by 𝑥, while 𝑥 is a fixed value.

We denote Θ = (𝜃1, 𝜃2, ..., 𝜃𝐷)𝑇 , Φ = (�⃗�1, �⃗�2, ..., �⃗�𝐾)𝑇 . Then Θ is a 𝐷 × 𝐾 matrix with each row representing
topic proportion of one document, while Φ is a 𝐾 × 𝑉 matrix with each row representing a topic. We also denote
z = 𝑧1:𝐷,1:𝑁 and w = 𝑤1:𝐷,1:𝑁 for convenience.

Our goal is to do posterior inference from the joint distribution. Since there are three sets of latent variables in the joint
distribution: Θ, Φ and z, inferring their posterior distribution at the same time will be difficult, but we can leverage the
conjugacy between Dirichlet prior such as 𝑝(𝜃𝑑; �⃗�) and the multinomial likelihood such as

∏︀𝑁𝑑

𝑛=1 𝑝(𝑧𝑑𝑛|𝜃𝑑) (here the
multinomial refers to a product of a bunch of categorical distribution, i.e. ignore the normalizing factor of multinomial
distribution).

Two ways to leverage this conjugacy are:

(1) Iterate by fixing two sets of latent variables, and do conditional computing for the remaining set. The examples
are Gibbs sampling and mean-field variational inference. For Gibbs sampling, each iterating step is fixing the value
of samples of two sets, and sample from the conditional distribution of the remaining set. For mean-field variational
inference, we often optimize by coordinate ascent: each iterating step is fixing the variational distribution of two sets,
and updating the variational distribution of the remaining set based on the parameters of the variational distribution of
the two sets. Thanks to the conjugacy, both conditional distribution in Gibbs sampling and conditional update of the
variational distribution in variational inference are tractable.

(2) Alternatively, we can integrate out some sets of latent variable before doing further inference. For example, we can
integrate out Θ and Φ, remaining the joint distribution 𝑝(w, z; �⃗�, 𝛿) and do Gibbs sampling or variational Bayes on z.
After having a estimation to z, we can extract some estimation about Φ as the topic information too. These methods
are called respectively collapsed Gibbs sampling, and collapsed variational Bayesian inference.

However, conjugacy requires the model being designed carefully. Here, we use a more direct and general method to
do Bayesian inference: Monte-Carlo EM, with HMC [LNTMN+11] as the Monte-Carlo sampler.

1.4.2 Logistic Normal Topic Model in ZhuSuan

Integrating out Θ and Φ requires conjugacy, or the integration is intractable. But integrating z is always tractable since
z is discrete. Now we have:

𝑝(𝑤𝑑𝑛 = 𝑣|𝜃𝑑,Φ) =

𝐾∑︁
𝑘=1

(𝜃𝑑)𝑘Φ𝑘𝑣

More compactly,

𝑝(𝑤𝑑𝑛|𝜃𝑑,Φ) = Catg(Φ𝑇 𝜃𝑑)

which means when sampling the words in the 𝑑th document, the word distribution is the weighted average of all topics,
and the weights are the topic proportion of the document.
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In LDA we implicitly use the bag-of-words model, and here we make it explicit. Let �⃗�𝑑 be a 𝑉 -dimensional vector,
�⃗�𝑑 =

∑︀𝑁𝑑

𝑛=1 one_hot(𝑤𝑑𝑛). That is, for 𝑣 from 1 to 𝑉 , (�⃗�𝑑)𝑣 represents the occurence count of the 𝑣th word in the
document. Denote X = (�⃗�1, �⃗�2, ..., �⃗�𝐷)𝑇 , which is a 𝐷 × 𝑉 matrix. You can verify the following concise formula:

log 𝑝(X|Θ,Φ) = −CE(X,ΘΦ)

Here, CE means cross entropy, which is defined for matrices as CE(A,B) = −
∑︀

𝑖,𝑗 𝐴𝑖𝑗 log𝐵𝑖𝑗 . Note that
𝑝(X|Θ,Φ) is not a proper distribution; It is a convenient term representing the likelihood of parameters. What we
actually means is log 𝑝(𝑤1:𝐷,1:𝑁 |Θ,Φ) = −CE(X,ΘΦ).

A intuitive demonstration of Θ, Φ and ΘΦ is shown in the following picture. Θ is the document-topic matrix, Φ is
the topic-word matrix, and then ΘΦ is the document-word matrix, which contains the word sampling distribution of
each document.

As minimizing the cross entropy encourages X and ΘΦ to be similar, this may remind you of low-rank matrix
factorization. It is natural since topic models can be interpreted as learning “document-topics” parameters and “topic-
words” parameters. In fact one of the earliest topic models are solved using SVD, a standard algorithm for low-rank
matrix factorization. However, as a probabilistic model, our model is different from matrix factorization by SVD (e.g.
the loss function is different). Probabilistic model is more interpretable and can be solved by more algorithms, and
Bayesian model can bring the benefits of incorporating prior knowledge and inferring with uncertainty.

After integrating z, only Θ and Φ are left, and there is no conjugacy any more. Even if we apply the “conditional
computing” trick like Gibbs sampling, no closed-form updating process can be obtained. However, we can adopt the
gradient-based method such as HMC and gradient ascent. Note that each row of Θ and Φ lies on a probability simplex,
which is bounded and embedded. It is not common for HMC or gradient ascent to deal with constrained sampling or
constrained optimzation. Since we do not nead conjugacy now, we replace the Dirichlet prior with logistic normal
prior. Now the latent variables live in the whole space R𝑛.

One may ask why to integrate the parameters z and lose the conjugacy. That is because our inference technique can
also apply to other models which do not have conjugacy from the beginning, such as Neural Variational Document
Model ([LNTMMYB16]).

The logistic normal topic model can be described as follows, where 𝛽𝑘 is 𝑉 -dimensional and �⃗�𝑑 is 𝐾-dimensional:

𝛽𝑘 ∼ 𝒩 (⃗0, 𝛿2I), 𝑘 = 1, 2, ...,𝐾

�⃗�𝑘 = softmax(𝛽𝑘), 𝑘 = 1, 2, ...,𝐾

�⃗�𝑑 ∼ 𝒩 (�⃗�,diag(�⃗�2)), 𝑑 = 1, 2, ..., 𝐷

𝜃𝑑 = softmax(�⃗�𝑑), 𝑑 = 1, 2, ..., 𝐷

𝑧𝑑𝑛 ∼ Catg(𝜃𝑑), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

𝑤𝑑𝑛 ∼ Catg(�⃗�𝑧𝑑𝑛), 𝑑 = 1, 2, ..., 𝐷, 𝑛 = 1, 2, ..., 𝑁𝑑

The graphical model representation is shown in the following figure.
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Since 𝜃𝑑 is a deterministic function of �⃗�𝑑, we can omit one of them in the probabilistic graphical model representation.
Here 𝜃𝑑 is omitted because �⃗�𝑑 has a simpler prior. Similarly, we omit �⃗�𝑘 and keep 𝛽𝑘.

Note: Called Logistic Normal Topic Model, maybe this reminds you of correlated topic models. However, in our
model the normal prior of �⃗�𝑑 has a diagonal covariance matrix diag(�⃗�2), so it cannot model the correlations be-
tween different topics in the corpus. However, logistic normal distribution can approximate Dirichlet distribution (see
[LNTMSS17]). Hence our model is roughly the same as LDA, while the inference techniques are different.

We denote H = (�⃗�1, �⃗�2, ..., �⃗�𝐷)𝑇 , B = (𝛽1, 𝛽2, ..., 𝛽𝐾)𝑇 . Then Θ = softmax(H), and Φ = softmax(B). Recall
our notation that X = (�⃗�1, �⃗�2, ..., �⃗�𝐷)𝑇 where �⃗�𝑑 =

∑︀𝑁𝑑

𝑛=1 one_hot(𝑤𝑑𝑛). After integrating {𝑧𝑑𝑛}, the last two lines
of the generating process:

𝑧𝑑𝑛 ∼ Catg(𝜃𝑑), 𝑤𝑑𝑛 ∼ Catg(�⃗�𝑧𝑑𝑛)

become log 𝑝(X|Θ,Φ) = −CE(X,ΘΦ). So we can write the joint probability distribution as follows:

𝑝(X,H,B; �⃗�, �⃗�, 𝛿) = 𝑝(B; 𝛿)𝑝(H; �⃗�, �⃗�)𝑝(X|H,B)

where both 𝑝(B; 𝛿) and 𝑝(H; �⃗�, �⃗�) are Gaussian distribution and 𝑝(X|H,B) = −CE(X, softmax(H)softmax(B)).

In ZhuSuan, the code for constructing such a model is:

@zs.meta_bayesian_net(scope='lntm')
def lntm(n_chains, n_docs, n_topics, n_vocab, eta_mean, eta_logstd):

bn = zs.BayesianNet()
eta_mean = tf.tile(tf.expand_dims(eta_mean, 0), [n_docs, 1])
eta = bn.normal('eta', eta_mean, logstd=eta_logstd, n_samples=n_chains,

group_ndims=1)
theta = tf.nn.softmax(eta)
beta = bn.normal('beta', tf.zeros([n_topics, n_vocab]),

logstd=log_delta, group_ndims=1)
phi = tf.nn.softmax(beta)
# doc_word: Document-word matrix
doc_word = tf.matmul(tf.reshape(theta, [-1, n_topics]), phi)
doc_word = tf.reshape(doc_word, [n_chains, n_docs, n_vocab])
bn.unnormalized_multinomial('x', tf.log(doc_word), normalize_logits=False,

dtype=tf.float32)
return bn

where eta_mean is �⃗�, eta_logstd is log �⃗�, eta is H (H is the uppercase letter of 𝜂), theta is Θ =
softmax(H), beta is B (B is the uppercase letter of 𝛽), phi is Φ = softmax(B), doc_word is ΘΦ, x is X.

Q: What does UnnormalizedMultinomial distribution means?

A: UnnormalizedMultinomial distribution is not a proper distribution. It means the likelihood of “bags
of categorical”. To understand this, let’s talk about multinomial distribution first. Suppose there are 𝑘 events
{1, 2, ..., 𝑘} with the probabilities 𝑝1, 𝑝2, ..., 𝑝𝑘, and we do 𝑛 trials, and the count of result being 𝑖 is 𝑥𝑖. Denote
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�⃗� = (𝑥1, 𝑥2, ..., 𝑥𝑘)𝑇 and 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑘)𝑇 . Then �⃗� follows multinomial distribution: 𝑝(�⃗�; 𝑝) = 𝑛!
𝑥1!...𝑥𝑘!

𝑝𝑥1
1 ...𝑝𝑥𝑘

𝑘 ,
so log 𝑝(�⃗�; 𝑝) = log 𝑛!

𝑥1!...𝑥𝑘!
− CE(�⃗�, 𝑝). However, when we want to optimize the parameter 𝑝, we do not care

the first term. On the other hand, if we have a sequence of results �⃗�, and the result counts are summarized in
�⃗�. Then log 𝑝(�⃗�; 𝑝) = −CE(�⃗�, 𝑝). The normalizing constant also disappears. Since sometimes we only have
access to �⃗� instead of the actual sequence of results, when we want to optimize w.r.t. the parameters, we can
write �⃗� ∼ UnnormalizedMultinomial(𝑝), although it is not a proper distribution and we cannot sample from it.
UnnormalizedMultinomial just means 𝑝(�⃗�; 𝑝) = −CE(�⃗�, 𝑝). In the example of topic models, the situation is
also like this.

Q: The shape of eta in the model is n_chains*n_docs*n_topics. Why we need the first dimension to store
its different samples?

A: After introducing the inference method, we should know eta is a latent variable which we need to integrate
w.r.t. its distribution. In many cases the integration is intractable, so we replace the integration with Monte-Carlo
methods, which requires the samples of the latent variable. Therefore we need to construct our model, calculate the
joint likelihood and do inference all with the extra dimension storing different samples. In this example, the extra
dimension is called “chains” because we utilize the extra dimension to initialize multiple chains and perform HMC
evolution on each chain, in order to do parallel sampling and to get independent samples from the posterior.

1.4.3 Inference

Let’s analyze the parameters and latent variables in the joint distribution. 𝛿 controls the sparsity of the words included
in each topic, and larger 𝛿 leads to more sparsity. We leave it as a given tunable hyperparameter without the need
to optimize. The parameters we need to optimize is �⃗� and �⃗�2, whose element represents the mean and variance of
topic proportion in documents; and B, which represents the topics. For �⃗� and �⃗�, we want to find their maximum
likelihood (MLE) solution. Unlike �⃗� and �⃗�, B has a prior, so we could treat it as a random variable and infer its
posterior distribution. But here we just find its maximum a posterior (MAP) estimation, so we treat it as a parameter
and optimize it by gradient ascent instead of inference via HMC. H is the latent variable, so we want to integrate it
out before doing optimization.

Therefore, after integrating H, our optimization problem is:

max
B,�⃗�,�⃗�

log 𝑝(X,B; �⃗�, �⃗�, 𝛿)

where

log 𝑝(X,B; �⃗�, �⃗�, 𝛿) = log 𝑝(X|B; �⃗�, �⃗�) + log 𝑝(B; 𝛿)

= log

∫︁
H

𝑝(X,H|B; �⃗�, �⃗�)𝑑H + log 𝑝(B; 𝛿)

The term log 𝑝(X|B; �⃗�, �⃗�) = log
∫︀
H
𝑝(X,H|B; �⃗�, �⃗�)𝑑H is evidence of the observed data X, given the model with

parameters B, �⃗�, �⃗�. Computing the integration is intractable, let alone maximize it w.r.t. the parameters. Fortunately,
this is the standard form of which we can write an lower bound called evidence lower bound (ELBO):

log 𝑝(X|B; �⃗�, �⃗�) ≥ log 𝑝(X|B; �⃗�, �⃗�)−KL(𝑞(H)||𝑝(H|X,B; �⃗�, �⃗�))

= E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)− log 𝑞(H)]

= ℒ(𝑞,B, �⃗�, �⃗�)

Therefore,

log 𝑝(X,B; �⃗�, �⃗�, 𝛿) ≥ ℒ(𝑞,B, �⃗�, �⃗�) + log 𝑝(B; 𝛿)

When 𝑞(H) = 𝑝(H|X,B; �⃗�, �⃗�), the lower bound is tight. To do optimization, we can apply coordinate ascent to the
lower bound, i.e. expectation-maximization (EM) algorithm: We iterate between E-step and M-step.
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In E-step, let

𝑞(H)← max
𝑞
ℒ(𝑞,B, �⃗�, �⃗�) = 𝑝(H|X,B; �⃗�, �⃗�)

In M-step, let

B, �⃗�, �⃗� ← max
B,�⃗�,�⃗�

[ℒ(𝑞,B, �⃗�, �⃗�) + log 𝑝(B; 𝛿)]

= max
B,�⃗�,�⃗�

{E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)] + log 𝑝(B; 𝛿)}

However, both the posterior 𝑝(H|X,B; �⃗�, �⃗�) in the E step and the integration E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)] in the M
step are intractable. It seems that we have turned an intractable problem into another intractable problem.

We have solutions indeed. Since the difficulty lies in calculating and using the posterior, we can use the whole set of
tools in Bayesian inference. Here we use sampling methods, to draw a series of samples H(1),H(2), ...,H(𝑆) from
𝑝(H|X,B; �⃗�, �⃗�). Then we let 𝑞(H) be the empirical distribution of these samples, as an approximation to the true
posterior. Then the M-step becomes:

B, �⃗�, �⃗� ← max
B,�⃗�,�⃗�

[E𝑞(H)[log 𝑝(X,H|B; �⃗�, �⃗�)] + log 𝑝(B; 𝛿)]

= max
B,�⃗�,�⃗�

[
1

𝑆

𝑆∑︁
𝑠=1

log 𝑝(X,H(𝑠)|B; �⃗�, �⃗�) + log 𝑝(B; 𝛿)]

Now the objective function is tractable to compute. This variant of EM algorithm is called Monte-Carlo EM.

We analyze the E-step and M-step in more detail. What sampling method should we choose in E-step? One of the
workhorse sampling methods is Hamiltonian Monte Carlo (HMC) [LNTMN+11]. Unlike Gibbs sampling which
needs a sampler of the conditional distribution, HMC is a black-box method which only requires access to the gradient
of log joint distribution at any position, which is almost always tractable as long as the model is differentiable and the
latent variable is unconstrained.

To use HMC in ZhuSuan, first define the HMC object with its parameters:

hmc = zs.HMC(step_size=1e-3, n_leapfrogs=20, adapt_step_size=True,
target_acceptance_rate=0.6)

Then write the log joint probability log 𝑝(X,H|B; �⃗�, �⃗�) = log 𝑝(X|B,H) + 𝑝(H; �⃗�, �⃗�):

def e_obj(bn):
return bn.cond_log_prob('eta') + bn.cond_log_prob('x')

Given the following defined tensor,

x = tf.placeholder(tf.float32, shape=[batch_size, n_vocab], name='x')
eta = tf.Variable(tf.zeros([n_chains, batch_size, n_topics]), name='eta')
beta = tf.Variable(tf.zeros([n_topics, n_vocab]), name='beta')

we can define the sampling operator of HMC:

model = lntm(n_chains, batch_size, n_topics, n_vocab, eta_mean, eta_logstd)
model.log_joint = e_obj
sample_op, hmc_info = hmc.sample(model,

observed={'x': x, 'beta': beta},
latent={'eta': eta})

When running the session, we can run sample_op to update the value of eta. Note that the first parameter of
hmc.sample is a MetaBayesianNet instance corresponding to the generative model. It could also be a function
accepting a Python dictionary containing values of both the observed and latent variables as its argument, and returning
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the log joint probability. hmc_info is a struct containing information about the sampling iteration executed by
sample_op, such as the acceptance rate.

In the M-step, since log 𝑝(X,H|B; �⃗�, �⃗�) = log 𝑝(X|B,H) + 𝑝(H; �⃗�, �⃗�), we can write the updating formula in more
detail:

�⃗�, �⃗� ← max
�⃗�,�⃗�

[
1

𝑆

𝑆∑︁
𝑠=1

log 𝑝(H(𝑠); �⃗�, �⃗�)]

B← max
B

[
1

𝑆

𝑆∑︁
𝑠=1

log 𝑝(X|H(𝑠),B) + log 𝑝(B; 𝛿)]

Then �⃗� and �⃗� have closed solution by taking the samples of H as observed data and do maximum likelihood estimation
of parameters in Gaussian distribution. B, however, does not have a closed-form solution, so we do optimization using
gradient ascent.

The gradient ascent operator of B can be defined as follows:

bn = model.observe(eta=eta, x=x, beta=beta)
log_p_beta, log_px = bn.cond_log_prob(['beta', 'x'])
log_p_beta = tf.reduce_sum(log_p_beta)
log_px = tf.reduce_sum(tf.reduce_mean(log_px, axis=0))
log_joint_beta = log_p_beta + log_px
learning_rate_ph = tf.placeholder(tf.float32, shape=[], name='lr')
optimizer = tf.train.AdamOptimizer(learning_rate_ph)
infer = optimizer.minimize(-log_joint_beta, var_list=[beta])

Since when optimizing B, the samples of H is fixed, var_list=[beta] in the last line is necessary.

In the E-step, 𝑝(H|X,B; �⃗�, �⃗�) could factorise as
∏︀𝐷

𝑑=1 𝑝(�⃗�𝑑|�⃗�𝑑,B; �⃗�, �⃗�), so we can do sampling for a mini-batch of
data given some value of global parameters B, �⃗�, and �⃗�. Since the update of B requires calculating gradients and
has a relatively large time cost, we use stochastic gradient ascent to optimize it. That is, after a mini-batch of latent
variables are sampled, we do a step of gradient ascent as M-step for B using the mini-batch chosen in the E-step.

Now we have both the sampling operator for the latent variable eta and optimizing operator for the parameter beta,
while the optimization w.r.t. eta_mean and eta_logstd is straightforward. Now we can run the EM algorithm.

First, the definition is as follows:

iters = X_train.shape[0] // batch_size
Eta = np.zeros((n_chains, X_train.shape[0], n_topics), dtype=np.float32)
Eta_mean = np.zeros(n_topics, dtype=np.float32)
Eta_logstd = np.zeros(n_topics, dtype=np.float32)

eta_mean = tf.placeholder(tf.float32, shape=[n_topics], name='eta_mean')
eta_logstd = tf.placeholder(tf.float32, shape=[n_topics],

name='eta_logstd')
eta_ph = tf.placeholder(tf.float32, shape=[n_chains, batch_size, n_topics],

name='eta_ph')
init_eta_ph = tf.assign(eta, eta_ph)

The key code in an epoch is:

time_epoch = -time.time()
lls = []
accs = []
for t in range(iters):

x_batch = X_train[t*batch_size: (t+1)*batch_size]
old_eta = Eta[:, t*batch_size: (t+1)*batch_size, :]

(continues on next page)
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(continued from previous page)

# E step
sess.run(init_eta_ph, feed_dict={eta_ph: old_eta})
for j in range(num_e_steps):

_, new_eta, acc = sess.run(
[sample_op, hmc_info.samples['eta'],
hmc_info.acceptance_rate],

feed_dict={x: x_batch,
eta_mean: Eta_mean,
eta_logstd: Eta_logstd})

accs.append(acc)
# Store eta for the persistent chain
if j + 1 == num_e_steps:

Eta[:, t*batch_size: (t+1)*batch_size, :] = new_eta

# M step
_, ll = sess.run(

[infer, log_px],
feed_dict={x: x_batch,

eta_mean: Eta_mean,
eta_logstd: Eta_logstd,
learning_rate_ph: learning_rate})

lls.append(ll)

# Update hyper-parameters
Eta_mean = np.mean(Eta, axis=(0, 1))
Eta_logstd = np.log(np.std(Eta, axis=(0, 1)) + 1e-6)

time_epoch += time.time()
print('Epoch {} ({:.1f}s): Perplexity = {:.2f}, acc = {:.3f}, '

'eta mean = {:.2f}, logstd = {:.2f}'
.format(epoch, time_epoch,

np.exp(-np.sum(lls) / np.sum(X_train)),
np.mean(accs), np.mean(Eta_mean),
np.mean(Eta_logstd)))

We run num_e_steps times of E-step before M-step to make samples of HMC closer to the desired equilibrium
distribution. We print the mean acceptance rate of HMC to diagnose whether HMC is working properly. If it is too
close to 0 or 1, the quality of samples will often be poor. Moreover, when HMC works properly, we can also tune
the acceptance rate to a value for better performance, and the value is usually between 0.6 and 0.9. In the example
we set adapt_step_size=True and target_acceptance_rate=0.6 to HMC, so the outputs of actual
acceptance rates should be close to 0.6.

Finally we can output the optimized value of phi = softmax(beta), eta_mean and eta_logstd to show the
learned topics and their proportion in the documents of the corpus:

p = sess.run(phi)
for k in range(n_topics):

rank = list(zip(list(p[k, :]), range(n_vocab)))
rank.sort()
rank.reverse()
sys.stdout.write('Topic {}, eta mean = {:.2f} stdev = {:.2f}: '

.format(k, Eta_mean[k], np.exp(Eta_logstd[k])))
for i in range(10):

sys.stdout.write(vocab[rank[i][1]] + ' ')
sys.stdout.write('\n')
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1.4.4 Evaluation

The log_likelihood used to calculate the perplexity may be confusing. Typically, the “likelihood” should refer to
the evidence of the observed data given some parameter value, i.e. 𝑝(X|B; �⃗�, �⃗�), with the latent variable H integrated.
However, it is even more difficult to compute the marginal likelihood than to do posterior inference. In the code, the
likelihood is actually 𝑝(X|H,B), which is not the marginal likelihood; we should integrate it w.r.t. the prior of H to
get marginal likelihood. Hence the perplexity output during the training process will be smaller than the actual value.

After training the model and outputing the topics, the script will run Annealed Importance Sampling (AIS) to
estimate the marginal likelihood more accurately. It may take some time, and you could turn on the verbose mode of
AIS to see its progress. Then our script will output the estimated perplexity which is relatively reliable. We do not
introduce AIS here. Readers who are interested could refer to [LNTMNea01].

1.5 zhusuan.distributions

1.5.1 Distribution

class Distribution(dtype, is_continuous, is_reparameterized, use_path_derivative=False,
group_ndims=0, device=device(type='cpu'), **kwargs)

Bases: object

The Distribution class is the base class for various probabilistic distributions which support batch inputs,
generating batches of samples and evaluate probabilities at batches of given values.

The typical input shape for a Distribution is like batch_shape + input_shape. where
input_shape represents the shape of non-batch input parameter, batch_shape represents how many in-
dependent inputs are fed into the distribution.

Samples generated are of shape ([n_samples]+ )batch_shape + value_shape. The first addi-
tional axis is omitted only when passed n_samples is None (by default), in which case one sample is gen-
erated. value_shape is the non-batch value shape of the distribution. For a univariate distribution, its
value_shape is [].

There are cases where a batch of random variables are grouped into a single event so that their probabilities
should be computed together. This is achieved by setting group_ndims argument, which defaults to 0. The last
group_ndims number of axes in batch_shape are grouped into a single event. For example, Normal(...,
group_ndims=1) will set the last axis of its batch_shape to a single event, i.e., a multivariate Normal
with identity covariance matrix.

When evaluating probabilities at given values, the given Tensor should be broadcastable to
shape (... + )batch_shape + value_shape. The returned Tensor has shape (... +
)batch_shape[:-group_ndims].

See also:

For more details and examples, please refer to Basic Concepts in ZhuSuan.

For both, the parameter dtype represents type of samples. For discrete, can be set by user. For continuous,
automatically determined from parameter types.

dtype must be among torch.int16, torch.int32, torch.int64, torch.float16, torch.float32 and torch.float64.

When two or more parameters are tensors and they have different type, TypeError will be raised.

Parameters

• dtype – The value type of samples from the distribution.

• is_continuous – Whether the distribution is continuous.
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• is_reparameterized – A bool. Whether the gradients of samples can and are allowed
to propagate back into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their
probabilities are calculated together. Default is 0, which means a single value is an event.
See above for more detailed explanation.

property batch_shape
The shape showing how many independent inputs (which we call batches) are fed into the distribution. For
batch inputs, the shape of a generated sample is batch_shape + value_shape.

property device
The device this distribution lies at.

Returns torch.device

property dtype
The sample type of the distribution.

property is_reparameterized
Whether the gradients of samples can and are allowed to propagate back into inputs, using the
reparametrization trick from (Kingma, 2013).

log_prob(given)
Compute log probability density (mass) function at given value.

Parameters given – A Var. The value at which to evaluate log probability density (mass)
function. Must be able to broadcast to have a shape of (... + )batch_shape +
value_shape.

Returns A Var of shape (... + )batch_shape[:-group_ndims].

prob(given)

sample(n_samples=None)
Return samples from the distribution. When n_samples is None (by default), one sample of shape
batch_shape + value_shape is generated. For a scalar n_samples, the returned Var has a new
sample dimension with size n_samples inserted at axis=0, i.e., the shape of samples is [n_samples]
+ batch_shape + value_shape.

Parameters n_samples – A 0-D int32 Tensor or None. How many independent samples to
draw from the distribution.

Returns A Var of samples.
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1.5.2 Normal

class Normal(mean=0.0, std=None, logstd=None, dtype=None, is_continuous=True,
is_reparameterized=True, group_ndims=0, device=device(type='cpu'), **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Normal distribution. See Distribution for details.

Parameters

• mean – A float Var. The mean of the Normal distribution. Should be broadcastable to match
std or logstd.

• std – A float Var. The standard deviation of the Normal distribution. Should be positive
and broadcastable to match mean.

• logstd – A float Var. The log standard deviation of the Normal distribution. Should be
broadcastable to match mean.

• group_ndims – A 0-D int32 Var representing the number of dimensions in batch_shape
(counted from the end) that are grouped into a single event, so that their probabilities are cal-
culated together. Default is 0, which means a single value is an event. See Distribution
for more detailed explanation.

• is_reparameterized – A Bool. If True, gradients on samples from this distribution
are allowed to propagate into inputs, using the reparametrization trick from (Kingma, 2013).

• use_path_derivative – A bool. Whether when taking the gradients of the log-
probability to propagate them through the parameters of the distribution (False meaning
you do propagate them). This is based on the paper “Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference”

property logstd
The log standard deviation of the Normal distribution.

property mean
The mean of the Normal distribution.

property std
The standard deviation of the Normal distribution.

1.5.3 Bernoulli

class Bernoulli(logits=None, probs=None, dtype=None, is_continuous=False, group_ndims=0, de-
vice=device(type='cpu'), **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Bernoulli distribution. See Distribution for details.

Parameters

• logits – A float Tensor. The log-odds of probabilities of being 1.

logits = log
𝑝

1− 𝑝

• probs – A ‘float’ Tensor. The p param of bernoulli distribution

• dtype – The value type of samples from the distribution. Can be int (torch.int16,
torch.int32, torch.int64) or float (torch.float16, torch.float32, torch.float64). Default is int32.
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• group_ndims – A 0-D int32 Tensor representing the number of dimensions in
batch_shape (counted from the end) that are grouped into a single event, so that their prob-
abilities are calculated together. Default is 0, which means a single value is an event. See
Distribution for more detailed explanation.

property logits

property probs

1.5.4 Beta

class Beta(alpha, beta, dtype=None, is_continuous=True, group_ndims=0, device=device(type='cpu'),
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Beta distribution See Distribution for details.

Parameters

• alpha – A ‘float’ Var. One of the two shape parameters of the Beta distribution.

• beta – A ‘float’ Var. One of the two shape parameters of the Beta distribution.

property alpha
One of the two shape parameters of the Beta distribution.

property beta
One of the two shape parameters of the Beta distribution.

1.5.5 Exponential

class Exponential(rate, dtype=None, is_continuous=True, group_ndims=0, de-
vice=device(type='cpu'), **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Exponential distribution See Distribution for details.

Parameters rate – A ‘float’ Var. Rate parameter of the Exponential distribution.

property rate
Shape parameter of the Exponential distribution.

1.5.6 Gamma

class Gamma(alpha, beta, dtype=None, is_continuous=True, group_ndims=0, device=device(type='cpu'),
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Gamma distribution See Distribution for details.

Parameters

• alpha – A ‘float’ Var. Shape parameter of the Gamma distribution.

• beta – A ‘float’ Var. Rate parameter of the Gamma distribution.

property alpha
Shape parameter of the Gamma distribution.
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property beta
Rate parameter of the Gamma distribution.

1.5.7 Laplace

class Laplace(loc, scale, dtype=None, is_continuous=True, group_ndims=0, device=device(type='cpu'),
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Laplace distribution See Distribution for details.

Parameters

• loc – A ‘float’ Var. Mean of the Laplace distribution.

• scale – A ‘float’ Var. Scale of the Laplace distribution.

property loc
Mean of the Laplace distribution.

property scale
Scale of the Laplace distribution.

1.5.8 Logistic

class Logistic(loc, scale, dtype=None, is_continuous=True, group_ndims=0, de-
vice=device(type='cpu'), **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Logistic distribution, always using the reparametrization trick from (Kingma, 2013). See
Distribution for details.

Parameters

• loc – A ‘float’ Var. The location term acting on standard Logistic distribution.

• scale – A ‘float’ Var. The scale term acting on standard Logistic distribution.

property loc

property scale

1.5.9 Poisson

class Poisson(rate, dtype=None, is_continuous=True, group_ndims=0, device=device(type='cpu'),
**kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Poisson distribution See Distribution for details.

Parameters rate – A ‘float’ Var. Rate parameter of the Poisson distribution.Must be positive.

property rate
Shape parameter of the Poisson distribution.

32 Chapter 1. Installation



ZhuSuan Documentation, Release 0.0.1

1.5.10 StudentT

class StudentT(df, loc=0.0, scale=1.0, dtype=None, is_continuous=True, group_ndims=0, de-
vice=device(type='cpu'), **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate StudentT distribution See Distribution for details.

Parameters

• df – A ‘float’ Var. Degrees of freedom.

• loc – A ‘float’ Var. Mean of the StudentT distribution.

• scale – A ‘float’ Var. Scale of the StudentT distribution.

property df
Degrees of freedom.

property loc
Mean of the Laplace distribution.

property scale
Scale of the Laplace distribution.

1.5.11 Uniform

class Uniform(low, high, dtype=None, is_continuous=True, is_reparameterized=True, group_ndims=0,
device=device(type='cpu'), **kwargs)

Bases: zhusuan.distributions.base.Distribution

The class of univariate Uniform distribution See Distribution for details.

Parameters

• low – A ‘float’ Var. Lower range (inclusive).

• high – A ‘float’ Var. Upper range (exclusive).

property high
Upper range (exclusive) of the Uniform distribution.

property low
Lower range (inclusive) of the Uniform distribution.

1.5.12 FlowDistribution

class FlowDistribution(latents, transformation, flow_kwargs=None, dtype=torch.float32,
group_ndims=0, device=device(type='cpu'), **kwargs)

Bases: zhusuan.distributions.base.Distribution

A class for sample from Flow networks by provide the latent distribution and the flow network, when calling
sample method, it returns the sample from flow network, when calling log_prob method it return the loss item
of flow network.

Parameters

• latents – An instance of Distribution class, as the prioror the latent variableof FlowDis-
trubution

• transformation – A RevNet instance, the Flow net work built by user
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• flow_kwargs – additional info to be recode

• dtype – data type

• device – device of Distribution

1.5.13 utils

assert_same_dtype_in(tensors_with_name, dtypes=None)
Whether all types of tensors in tensors_with_name are the same and in the allowed dtypes.

Parameters

• tensors_with_name – A list of (tensor, tensor_name).

• dtypes – A list of allowed dtypes. If None, then all dtypes are allowed.

Returns The dtype of tensors.

assert_same_float_dtype(tensors_with_name)
Whether all tensors in tensors_with_name have the same floating type.

Parameters tensors_with_name – A list of (tensor, tensor_name).

Returns The type of tensors.

assert_same_log_float_dtype(tensors_with_name)
Whether all tensors in tensors_with_name have the same floating type, which also support log/exp operations.

Parameters tensors_with_name – A list of (tensor, tensor_name).

Returns The type of tensors.

check_broadcast(mean, std)
check whether mean and std broadcast match

1.6 zhusuan.framework

1.6.1 BayesianNet

class BayesianNet(observed=None, device=device(type='cpu'))
Bases: torch.nn.modules.module.Module

bernoulli(name, logits=None, probs=None, dtype=None, is_continuous=False, group_ndims=0,
n_samples=None, **kwargs)

beta(name, alpha, beta, dtype=None, is_continuous=True, group_ndims=0, n_samples=None,
**kwargs)

property cache
The dictionary of all named deterministic nodes in this BayesianNet.

Returns A dict.

property device
The device this module lies at.

Returns torch.device

exponential(name, rate, dtype=None, is_continuous=True, group_ndims=0, n_samples=None,
**kwargs)
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gamma(name, alpha, beta, dtype=None, is_continuous=True, group_ndims=0, n_samples=None,
**kwargs)

laplace(name, loc, scale, dtype=None, is_continuous=True, group_ndims=0, n_samples=None,
**kwargs)

log_joint(use_cache=False)
The default log joint probability of this BayesianNet. It works by summing over all the conditional log
probabilities of stochastic nodes evaluated at their current values (samples or observations).

Returns A Var.

logistic(name, loc, scale, dtype=None, is_continuous=True, group_ndims=0, n_samples=None,
**kwargs)

property nodes
The dictionary of all named stochastic nodes in this BayesianNet.

Returns A dict.

normal(name, mean=0.0, std=None, logstd=None, dtype=None, is_continuous=True,
is_reparameterized=True, group_ndims=0, n_samples=None, **kwargs)

observe(observed)
Assign the nodes and values to be observed in this BayesianNet.

Parameters observed – A dictionary of (string, Tensor) pairs, which maps from names of
stochastic nodes to their observed values.

property observed
The dictionary of all observed nodes in this BayesianNet.

Returns A dict.

poisson(name, rate, dtype=None, is_continuous=True, group_ndims=0, n_samples=None, **kwargs)

sn(dist, name, n_samples=None, **kwargs)
Short cut for method stochastic_node()

snode(*args, **kwargs)
Short cut for method stochastic_node()

stochastic_node(distribution, name, n_samples=None, **kwargs)
Add a stochastic node in this BayesianNet that follows the distribution assigned by the name parameter.

Parameters

• distribution – The distribution which the node follows.

• name – The unique name of the node.

• n_samples – number of samples per sample process

• kwargs – Parameters of the distribution which the node builds with.

Returns A instance(sample) of the node.

studentT(name, df, loc=0.0, scale=1.0, dtype=None, is_continuous=True, group_ndims=0,
n_samples=None, **kwargs)

to(device)
Moves and/or casts the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)

to(dtype, non_blocking=False)
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to(tensor, non_blocking=False)

to(memory_format=torch.channels_last)

Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtypes.
In addition, this method will only cast the floating point or complex parameters and buffers to dtype
(if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes
unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the
host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note: This method modifies the module in-place.

Args:

device (torch.device): the desired device of the parameters and buffers in this module

dtype (torch.dtype): the desired floating point or complex dtype of the parameters and
buffers in this module

tensor (torch.Tensor): Tensor whose dtype and device are the desired dtype and device for all
parameters and buffers in this module

memory_format (torch.memory_format): the desired memory format for 4D parameters
and buffers in this module (keyword only argument)

Returns: Module: self

Examples:

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],

[-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],

[-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],

[-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],

[-0.5112, -0.2324]], dtype=torch.float16)

(continues on next page)
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(continued from previous page)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],

[ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],

[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)

training: bool

uniform(name, low, high, dtype=None, is_continuous=True, is_reparameterized=True,
group_ndims=0, n_samples=None, **kwargs)

1.6.2 StochasticTensor

class StochasticTensor(bn, name: str, dist: zhusuan.distributions.base.Distribution, observa-
tion=None, n_samples=None, **kwargs)

Bases: object

The StochasticTensor class represents the stochastic nodes in a BayesianNet. We can use any dis-
tribution available in zhusuan.distributions to construct a stochastic node in a BayesianNet. For
example:

class Net(BayesianNet):
def __init__(self):

self.stochastic_node('Normal', name='x', mean=0., std=1.)

will build a stochastic node in Net with the Normal distribution. The returned x will be a instance of
StochasticTensor.

StochasticTensor instances are Vars, which means that they can be passed into any Jittor operations. This
makes it easy to build Bayesian networks by mixing stochastic nodes and Jittor primitives.

See also:

For more information, please refer to Basic Concepts in ZhuSuan.

Parameters

• bn – A BayesianNet.

• name – A string. The name of the StochasticTensor. Must be unique in a
BayesianNet.

• dist – A Distribution instance that determines the distribution used in this stochastic
node.

• observation – A Var, which matches the shape of dist. If specified, then the
StochasticTensor is observed and the tensor property will return the observation.

• n_samples – A 0-D integer. Number of samples generated by this
StochasticTensor.

property bn
The BayesianNet where the StochasticTensor lives.
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Returns A BayesianNet instance.

property dist
The distribution followed by the StochasticTensor.

Returns A Distribution instance.

property dtype
The sample type of the StochasticTensor.

Returns A DType instance.

get_shape()
Alias of shape.

Returns A TensorShape instance.

is_observed()
Whether the StochasticTensor is observed or not.

Returns A bool.

log_prob(sample=None)

property name
The name of the StochasticTensor.

Returns A string.

sample(force=False)
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned. :param force: force to sample, disregard the observed value, default as False :return:
A Var.

property shape
Return the static shape of this StochasticTensor.

Returns A torch.Size instance.

property tensor
The value of this StochasticTensor. If it is observed, then the observation is returned, otherwise
samples are returned.

Returns A Var.

1.7 zhusuan.variational

1.7.1 ELBO

class ELBO(generator, variational, estimator='sgvb', transform=None, transform_var=[], auxil-
lary_var=[])

Bases: torch.nn.modules.module.Module

The class that represents the evidence lower bound (ELBO) objective for variational inference. It can be con-
structed like a Jittor’s Module by passing 2 BayesianNet instances. For example, the generator network and
the variational inference network in VAE. The model can calculate the ELBO’s value with observations passed.

See also:

For more details and examples, please refer to Variational Autoencoders and Bayesian Neural Networks

Parameters
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• generator – A :class’~zhusuan.framework.BayesianNet` instance or a log joint probabil-
ity function. For the latter, it must accepts a dictionary argument of (string, Tensor)
pairs, which are mappings from all node names in the model to their observed values. The
function should return a Tensor, representing the log joint likelihood of the model.

• variational – A BayesianNet instance that defines the variational family.

• estimator – gradient estimate method, including sgvb and reinforce

• transform – A RevNet instance that transform Specified variables,

returns the transformed variable and the log_det_J i.e log-determinant of transition Jacobian matrix :param
transform_var: a list of names of variable to be transformed, all tensor that correspond to these names will be
placed into tuple by order and feed to the transform network :param auxillary_var: auxillary variable name list
that need to be passed to transform network

forward(observed, reduce_mean=True, **kwargs)
observe nodes, transform latent variables, return evidence lower bound :return: evidence lower bound

log_joint(nodes)
The default log joint probability function. It works by summing over all the conditional log probabilities
of stochastic nodes evaluated at their current values (samples or observations).

Returns A Var.

reinforce(logpxz, logqz, reduce_mean=True, baseline=None, variance_reduction=True, decay=0.8)
Implements the score function gradient estimator for the ELBO, with optional variance reduction using
moving mean estimate or “baseline”. Also known as “REINFORCE” (Williams, 1992), “NVIL” (Mnih,
2014), and “likelihood-ratio estimator” (Glynn, 1990).

It works for all types of latent StochasticTensor s.

Note: To use the reinforce() estimator, the is_reparameterized property of each reparame-
terizable latent StochasticTensor must be set False.

Parameters

• logpxz – log joint of generator

• logqz – log joint of variational

• reduce_mean – whether reduce to a scalar by mean operation

• baseline – A Tensor that can broadcast to match the shape returned by log_joint. A
trainable estimation for the scale of the elbo value, which is typically dependent on ob-
served values, e.g., a neural network with observed values as inputs. This will be addi-
tional.

• variance_reduction – Bool. Whether to use variance reduction. By default will
subtract the learning signal with a moving mean estimation of it. Users can pass an addi-
tional customized baseline using the baseline argument, in that way the returned will be a
tuple of costs, the former for the gradient estimator, the latter for adapting the baseline.

• decay – Float. The moving average decay for variance normalization.

Returns A Tensor. The surrogate cost for optimizers to minimize.

sgvb(logpxz, logqz, reduce_mean=True, log_det=None)
Implements the stochastic gradient variational bayes (SGVB) gradient estimator for the objective, also
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known as “reparameterization trick” or “path derivative estimator”. It was first used for importance
weighted objectives in (Burda, 2015), where it’s named “IWAE”.

It only works for latent StochasticTensor s that can be reparameterized (Kingma, 2013). For example,
Normal and Concrete.

Note: To use the sgvb() estimator, the is_reparameterized property of each latent Stochas-
ticTensor must be True (which is the default setting when they are constructed).

Returns A Tensor. The surrogate cost for optimizers to minimize.

training: bool

1.7.2 ImportanceWeightedObjective

class ImportanceWeightedObjective(generator, variational, axis=None, estimator='sgvb')
Bases: torch.nn.modules.module.Module

The class that represents the importance weighted objective for variational inference (Burda, 2015)

As a variational objective, ImportanceWeightedObjective provides two gradient estimators for the
variational (proposal) parameters:

• sgvb(): The Stochastic Gradient Variational Bayes (SGVB) estimator, also known as “the reparameter-
ization trick”, or “path derivative estimator”.

• vimco(): The multi-sample score function estimator with variance reduction, also known as “VIMCO”.

Parameters

• generator – generator part of importance weighted objective

• variational – variational part of importance weighted objective

• axis – The sample dimension(s) to reduce when computing the outer expectation in the
objective.

• estimator – the estimator, a str in either ‘sgvb’ or ‘vimco’

forward(observed, reduce_mean=True)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

log_joint(nodes)

sgvb(logpxz, logqz, reduce_mean=True)
Implements the stochastic gradient variational bayes (SGVB) gradient estimator for the objective, also
known as “reparameterization trick” or “path derivative estimator”. It was first used for importance
weighted objectives in (Burda, 2015), where it’s named “IWAE”.

It only works for latent StochasticTensor s that can be reparameterized (Kingma, 2013). For example,
Normal and Concrete.

40 Chapter 1. Installation



ZhuSuan Documentation, Release 0.0.1

Note: To use the sgvb() estimator, the is_reparameterized property of each latent Stochas-
ticTensor must be True (which is the default setting when they are constructed).

Returns A Tensor. The surrogate cost for optimizers to minimize.

training: bool

vimco(logpxz, logqz, reduce_mean=True)
Implements the multi-sample score function gradient estimator for the objective, also known as “VIMCO”,
which is named by authors of the original paper (Minh, 2016).

It works for all kinds of latent StochasticTensor s.

Note: To use the vimco() estimator, the is_reparameterized property of each reparameterizable
latent StochasticTensor must be set False.

Returns A Tensor. The surrogate cost for optimizers to minimize.

1.8 zhusuan.mcmc

1.8.1 SGMCMC

class SGMCMC
Bases: torch.nn.modules.module.Module

Base class for stochastic gradient MCMC (SGMCMC) algorithms.

SGMCMC is a class of MCMC algorithms which utilize stochastic gradients instead of the true gradients.
To deal with the problems brought by stochasticity in gradients, more sophisticated updating scheme, such as
SGHMC and SGNHT, were proposed. We provided four SGMCMC algorithms here: SGLD, SGHMC.

The typical code for SGMCMC inference is like:

sgmcmc = zs.mcmc.SGLD(learning_rate=lr)
net = BayesianNet()
for epoch in range(epoch_size):

for step in range(num_batches):
w_samples = model.sample(net, {'x': x, 'y': y})

for i, (k, w) in enumerate(w_samples.items()):
# Utilize stochastic gradients by samples and update parameters.
...

forward(bn, observed, resample=False, step=1)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.
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initialize()

sample(bn, observed, resample=False, step=1)
Running one sgmcmc iteration.

Parameters

• bn – A instance of BayesianNet.

• observed – A dictionary of (string, Tensor) pairs. Mapping from names of
observed StochasticTensor s to their values.

• resample – Flag indicates if the sampler need get the var list of the BayesianNet
instance, usually set to True on first sgmcmc iteration.

Returns A list of Var, samples generated by sgmcmc iteration.

training: bool

1.8.2 SGLD

class SGLD(learning_rate)
Bases: zhusuan.mcmc.SGMCMC.SGMCMC

Subclass of SGMCMC which implements Stochastic Gradient Langevin Dynamics (Welling & Teh, 2011)
(SGLD) update. The updating equation implemented below follows Equation (3) in the paper.

• var_list - The updated values of latent variables.

Parameters learning_rate – A 0-D float32 Var.

property device
The device this module lies at.

Returns torch.device

to(device)
Moves and/or casts the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)

to(dtype, non_blocking=False)

to(tensor, non_blocking=False)

to(memory_format=torch.channels_last)

Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtypes.
In addition, this method will only cast the floating point or complex parameters and buffers to dtype
(if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes
unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the
host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note: This method modifies the module in-place.

Args:
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device (torch.device): the desired device of the parameters and buffers in this module

dtype (torch.dtype): the desired floating point or complex dtype of the parameters and
buffers in this module

tensor (torch.Tensor): Tensor whose dtype and device are the desired dtype and device for all
parameters and buffers in this module

memory_format (torch.memory_format): the desired memory format for 4D parameters
and buffers in this module (keyword only argument)

Returns: Module: self

Examples:

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],

[-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],

[-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],

[-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],

[-0.5112, -0.2324]], dtype=torch.float16)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j, 0.2382+0.j],

[ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],

[0.6122+0.j, 0.1150+0.j],
[0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)

training: bool
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1.8.3 PSGLD

class PSGLD(learning_rate, decay=0.9, epsilon=0.001)
Bases: zhusuan.mcmc.SGLD.SGLD

PSGLD with RMSprop preconditioner, “Preconditioned stochastic gradient Langevin dynamics for deep neural
networks”

training: bool

1.8.4 SGHMC

class SGHMC(learning_rate, friction=0.25, variance_estimate=0.0, n_iter_resample_v=20, sec-
ond_order=True)

Bases: zhusuan.mcmc.SGMCMC.SGMCMC

training: bool

1.9 zhusuan.invertible

1.9.1 RevNet

class RevNet
Bases: torch.nn.modules.module.Module

An abc of reversible networkevery subclass should implement both _forward and _inverse abstract
method. return value of _forward and _inverse is like (y, log_det_J), in which y is the transformed
tensor and log_det_J` is log-determinant of Jacobian.

forward(*inputs, reverse=False, **kwargs)
when using model.forward(x, reverse=False) process going with _forward(x), when us-
ing model.forward(x, reverse=True) process going with _inverse(x).

training: bool

1.9.2 RevSequential

class RevSequential(layers)
Bases: zhusuan.invertible.base.RevNet

the RevSequential provide a invertible transform which contain a list of instance of RevNet. when forward
passing with reverse=False, the input x goes through every RevNet in the list also with reverse=False
from begin to end , when forward passing with reverse=True, input x goes through every in the list also
with reverse=True from end to begin.

Parameters layers – a list of RevNet instance.

training: bool
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1.9.3 Coupling

class Coupling(in_out_dim, mid_dim, hidden, mask_config)
Bases: zhusuan.invertible.base.RevNet

coupling layer class

Parameters

• in_out_dim – input/output dimensions.

• mid_dim – number of units in a hidden layer.

• hidden – number of hidden layers.

• mask_config – 1 if transform odd units, 0 if transform even units.

training: bool

1.9.4 MaskCoupling

class MaskCoupling(in_out_dim=- 1, mid_dim=- 1, hidden=- 1, mask=None, inner_nn=None)
Bases: zhusuan.invertible.base.RevNet

A coupling layer Identify if keep same or do transform by mask

Parameters

• in_out_dim – input/output dimensions.

• mid_dim – number of units in a hidden layer

• hidden – number of hidden layers

• mask – mask given by the user, often generated by func-
tion:~zhusuan.invertible.coupling.get_coupling_mask

training: bool

1.9.5 Scaling

class Scaling(dim)
Bases: zhusuan.invertible.base.RevNet

Initialize a (log-)scaling layer. when Forward pass, given class:x as input tensor, it returns (y, log_det_J)
where y is transformed tensor by y=x*exp(log_scale) and log_det_J is log-determinant of Jacobian.

Parameters dim – input/output dimensions.

training: bool
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1.9.6 MaskedLinear

class MaskedLinear(input_size, n_outputs, mask, cond_label_size=None)
Bases: torch.nn.modules.linear.Linear

MADE building block layer

forward(x, cond_y=None)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

in_features: int

out_features: int

weight: torch.Tensor

1.9.7 MADE

class MADE(input_size, hidden_size, n_hidden, cond_label_size=None, input_order='sequential', in-
put_degrees=None, activation='relu')

Bases: zhusuan.invertible.base.RevNet

MADE class

Parameters

• input_size – a scalar; dim of inputs

• hidden_size – a scalar; dim of hidden layers

• n_hidden – a scalar; number of hidden layers

• activation – a str; activation function to use

• input_order – a str or tensor; variable order for creating the autoregressive masks (se-
quential|random) or the order flipped from the previous layer in a stack of mades

• conditional – a bool; whether model is conditional

static create_mask(input_size, hidden_size, n_hidden, input_order='sequential', in-
put_degrees=None)

Mask generator for MADE & MAF (see MADE paper sec 4:https://arxiv.org/abs/1502.03509)

Parameters

• input_size – dim of inputs

• hidden_size – dim of hidden layers

• n_hidden – number of hidden layers

• input_order – variable order for creating the autoregressive masks (sequen-
tial|random)

• input_degrees – degrees provide by user

Returns: List of masks
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training: bool

1.10 Contributing

We always welcome contributions to help make ZhuSuan-Torch better. If you would like to contribute, please check
out the guidelines here. Below are an incomplete list of our contributors (find more on this page).

ZhuSuan-PyTorch

• Zhengyi Wang (thuwzy)

• ChenDong Xiang (Xiang-cd)

ZhuSuan on other platforms

• Guande He (rubbybbs)

• Yong Ren (McGrady00H)

• Jianfei Chen (cjf00000)

• Jiaxin Shi (thjashin)

• Wen jie Line (awakebacker)

• Cheng Lu (LuChengTHU)
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